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Abstract

Motivated by the work (Karachalios N I 2008 Lett. Math. Phys. 83 189-
99), we present explicit asymptotic estimates on the eigenvalues of the critical
Schrédinger operator, involving inverse-square potential, based on improved
Hardy—Sobolev-type inequalities.

PACS number: 02.30.Tb

1. Introduction

In this paper, we present explicit asymptotic estimates of the critical Schrodinger operator,
based on recent results on improved Hardy—Sobolev-type inequalities, motivated by the work
[5] where Weyl’ s type estimates where obtained by using improved Hardy inequalities.

More precisely, in [5], the author considered the eigenvalue problem for the critical
Schrédinger operator —A — V,

— Au—V(x)u = \u, in €, (1.1)
u =20, on 0%,

where € is a bounded domain of RN, N > 3, containing the origin and

N-2\% 1
-5 2

The term critical is due to the fact that the constant C* = (N — 2)?/4 is the optimal constant
of the Hardy inequality

u? ) - N
C/ —| B dx S/ |Vu|” dx, forall ue Cy°(R2), 2 CR™, N >3, (1.2)
Q X Q
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which is not attained in HO1 (€2). Based on the following improved Hardy inequalities (see
(3, 10]),

N -2\’ 2 Va 2N
[rorac- (22) [tz cqo([wa) o< 20 ay
Q 2 o |x| Q N -2

which holds for every u € C§°(€2), the author in [5] proved the following Weyl’s type estimates
for the eigenvalues of (1.1)

Theorem 1.1. Ler Q C RN, N > 3, be a bounded domain containing the origin. Assume
further that

2N

<q<?2. (1.4)

The eigenvalues of the problem (1.1) with potential V (x) = (N — 2)%/4|x|? satisfy Weyl’s

estimate
Ng— 7N+2q Ng—2N+2q

> C(g, Qe un ()~ Jom J = oo, (1.5)

where () denotes the Lebesgue measure of Q in RY.

In this work we improve these Weyl’s type estimates by using improved Hardy—Sobolev
inequalities; theorem A in [4] states that

Theorem 1.2. Let Q be a bounded domain in RN, N > 3, containing the origin and
D > Dy :=sup,.q |x|. Then, there exists a positive constant Cys, such that

frta (552 [ o ( Lo ()

forallu e C ().

N-2

dx) (1.6)

This estimate is sharp in the sense that the power — 25{;’:21) in the logarithm cannot be

replaced by a bigger power. We note that in the radial case, i.e. where 2 = By, is the open ball

inRY, N > 3, of radius R centered at the origin and u € Cy°(BR\{0}) is a radially symmetric

function, the same result was proved in [11], with the use of a Caffarelli-Kohn—Nirenberg

inequality and in [15] with the use of Bliss’ inequality. From the discussion in [4, 11], it is

clear that the nature of (1.6) depends on the distance of D from Dy; for instance in the case

where D = D, the author in [11] proved that the inequality cannot hold in the nonradial case.
The best constant Cyg in (1.6), as it was obtained in [1], is as follows.

Lemma 1.1. Let Q be a bounded domain in RN, N > 3, containing the origin and
Do = sup,.q |x|. If

D > Dyevs, (1.7)
then the best constant in (1.6) is given by
Cus=S8S(N)(N—=2)"" ¥

2(N 1)

(1.8)
where S(N) is the best constant in the Sobolev inequality in RN and there exists no minimizer

in H! ().

As is well known, see [2, 9, 12], the best constant in the Sobolev inequality in RN,

N=2

f|W|2dx>S</ |u|~zfzdx) , (1.9)
RN RN
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is

N(N -2 N+1\7"
S(N) = % Sy 2N = 22N 71N ( : ) ’ (1.10)
where Sy is the area of the N-dimensional unit sphere and the extremal functions are
y(x]) =W +v7x e " , D . .
(1) = (u? + 2 |x )~ N2 0 0 (1.11)

The same best constant for (1.6) was obtained in [15] for the radial case of (1.6) i.e. assuming
only radial functions defined on Q2 = Bg and D = R.
In this case the minimizers are given by

(1) = X1 <<—10g (%’)) ) . x€BR\O)  bunlos, = 0.
(1.12)

where v, , are the extremals of the Sobolev inequality.

2. Explicit Weyl’s type estimates
Using (1.6), lemma 1.1 and the arguments of [8] we may prove that

Theorem 2.1. Assume that D > Dy e, Then, the eigenvalues of the problem (1.1) with
potential V(x) = (N — 2)%/4|x|? satisfy Weyl’s estimate
JYE — 2
)"j = CI-ISei1 ||X*T||L2"(’Q) jﬁ
2AN— 4

D —1 _N-L -N .2
N € ||X 2 ||L2(Q)]Na (21)

2 S(N)(N =2)~

where X := (—log (%))71.

Proof. We adapt the arguments of [5] in our case. Let Q2 C RN, N > 3, be a bounded
domain containing the origin. We define the operator

(N —2)?
TR
with the domain of definition D(Kp) = C§°(2) and its Friedrich’s extension K : D(K) —
L?(2), with its domain defined as

Ko=—A

(N —2)*
41x|?
which is a nonnegative self-adjoint operator on L%(2). Then as it was proved in [14]: there

exists a complete orthonormal basis {¢ 5 }j>1 of L?(Q) consisting of eigenfunctions of K with
the eigenvalue sequence

D(K) := {u e H(Q) : —Au— ue L2(Q)},

D<A <A< <A< = 00, as j — oo. (2.2)

The operator K being non-negative and self-adjoint in L?(Q) gives rise to the semigroup
of operators e ™™ for every t > 0, possessing an integral kernel k(x,y,t) > 0 for all
(x,y,1) € Q x Q x (0, 00). The operator K has compact resolvent; thus, k(x, y, ¢) can also
be represented as

k(x, y,1) = D exp(—=nt)n (X)n (3). 2.3)

n=1
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We quote that k(x, y, t) solves the problem

N —

Ok(x,y,t) — Ayk(x,y,t) — %k(x y, 1) = in 2 x Q x(0,00),
k(x,y, t) >0, in 2 x Q x (0, 00),

k(x,y,t) =0, in 02 x 92 x (0, 00).

Since {¢;};>1 is an orthonormal basis of L%(Q), it follows that

f@) = Zexp(—2knt) = f [ k*(x,y, 1) dxdy.
= eJa

Applying Holder’s inequality and the usual 1-trick, we get that

1
N—1 * Gl
f(t)=/ / [X <M) % (x,y,n}
Q
|:X e < ) k(x, y,t)i| . dx dy
L

</ [/ X 5= (M kf”‘(x,y,r)dy}

e lJa D

_2N-D |y| %
. / X @27 | =— ) k(x, y,t)dy dx
o D

1Y o R
3) (x,y,0) y) x

where Q denotes the function

Q(x,z):/;zx MM(';') k(x,y, t)dy—/X‘('f)') k(x,y,t)dy.

Observe that the function X~ belongs to L?(2); more precisely,

N _ —(N—1) [yl —(N—-1) Iyl
X -IILz(m—/QX (D drs | X D)%Y
D

D FAN-1
< Na)N/ PNl (— log —) dr
0 D

and after some proper change of variables, we have that

1
N-1 _ _
||X_ 2 ||iZ(Q) < Na)N DN/ tN ! (_logt)N ! dr
0

N
:Na)NDN/ sV e ™M ds = wy DNQ.
0

NN-1

t >0,

2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

@2.11)

Note that the equality holds in the case where €2 is a sphere with center the origin and radius

D. Moreover, (2.3) and the fact that {¢;} ;> are orthonormal in L?(Q) imply that

Qx,0) = X7 (m) .
D
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Thus, Q(x, t) is the solution of the Cauchy-Dirichlet problem:

(N —2)? .
0,9(x,1) — A, Q(x,1) — WQ(X, ) =0, in 2 x (0,00), (2.12)
v [ ]x]
Qx,00=X o) for x € Q,
(2.13)
Qx,t) =0, in 9 x (0, 00).

Multiplying the heat equation (2.12) by Q in the L?(2)-inner product, we get the energy
equation

||Q(t)||L2(Q) + ||Q(t)||H () =0.

2dr

The energy equation above, combined with (2.13), implies that
_N-1 2

1201122 < N1QONBag = | X~ [10)- (2.14)

Now, by inserting (2.14) into (2.6), the inequality
2p*-1) T V] - (|| l*
fNWIW'MM/OXm<)Huww>M 2.15)
o \Ue D

follows. The right-hand side of (2.15) can be estimated further, by applying the improved
Hardy—Sobolev inequality (1.6). Thus,

2(17* 2)
v [1X ||
0 < N2 ety // <|v k(x,y, 0> — 4| |2 kz(x y,l)) dydx. (2.16)

On the other hand, by (2.3) and equation (2.4), we deduce that

if(t)zf/k(x7yvt)atk(-x7yat)d'xdy
dr eJa

N —2)2
= _2/ / (|Vyk(x,y,t)|2 - (—z)kz(x,y,t)> dydx. (2.17)
aJe 4yl
Combining (2.16) and (2.17), we get the differential inequality
df) < —2Cys

2(p*—1) 2(p*-2)

@ X G

()

dr,

which if integrated with respect to time yields

foy = Z;exp(—nnt) < [m]' XS g (2.18)
Setting
pr 1
T2 -2y
in (2.18), we conclude with the estimate
. p* = —Anp* T
jexp <_p* — 2) < Zexp [m] <Cyus A X" 7T g (2.19)

n=I1
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From this inequality and the fact that (p* — 2)/p* = 2/N, we conclude that

A > Cuse X2 N j#
j =z CHs € || ‘ ||L2(SZ)-] .
Finally, (1.8) implies the estimate (2.1). O
Remark 2.1. Weyl’s estimate for the eigenvalue problem (see [8, theorem 1.2])

— Au = pu, in ,

(2.20)
u =20, in 0%,
(2.21)

is the following:
2,2
wj = S(Nye™ un(Q)7F j7,
where 1y () denotes the Lebesgue measure of © in RV and S(N), given by (1.10), is the
best constant in the Sobolev’s inequality (see 1.9). We want to compare the estimates (2.21)

and (2.1). We claim that
-1 CN-1 =2 2
||X 2 ||L21\(/Q) < /'LN(Q) N’

(N _ 2)72(NN
or
(N =2V D X T2, g > un (). (2.22)
For the proof of (2.22), we observe that
N—1 N—1
_N-l o _ |-x| DO
X7 g = /;2 (—log <3)> dx > <—10g (3)> /s;dx

D\ N
> (log (E)) N (€2),

and from (1.7) we have that
7N71 — —
X7 12 > (N =2~V Puy(@).

Thus, (2.22) is proved. As it was expected the eigenvalues of (1.1) are generally smaller than
those of (2.20). We note also the results of [7] concerning the principal eigenvalue.

Using theorem 2.1, we may improve the results of [6] concerning the asymptotic behavior

of the corresponding to (1.1) parabolic equation:
¢ —vAP — vV (x)p + f(¢p) =0, v >0, in Q, >0, (2.23)
¢ (x,0) = ¢o(x), for x e Q, (2.24)
¢x,1)=0 in 09, >0, (2.25)

where the reaction term f : R — R is a polynomial of odd degree with a positive leading
coefficient

2y—1

by,—1 > 0. (2.26)

f&)y=Y bis,
i=0

We denote by & the positive number for which
f'(s) = —k, forany s € R.
More precisely, in [6] using theorem 1.1, it was proved that
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Theorem 2.2. Let @ ¢ RY, N > 3, be a bounded domain containing the origin.
The initial-boundary value problem (2.23)—(2.24)—(2.25) with nonlinearity (2.26) defines
a semiflow S(t) : L*(Q) — L*(Q) possessing a global attractor A. There exists a constant
Ci(q, 2, N) > 0 such that dimy A < dy with

Ng
dy = Ci(q, 2, )" (2) 7 (@), (2.27)
v
However, the dimension of the attractor, using theorem 2.1 and the arguments of [6], may
be estimated as

Lemma 2.1.  The dimension of the global attractor A, obtained in theorem 2.2, satisfies
dimy A < d, with

N N/2
~ K\ 7 N2 N+2 N/2 _N-1
a=(%)e (T 1X~ 1@,

where Cys is given in (1.8) and an estimate of ||X_NT_]||L2(Q) may be found in (2.11) and in
(2.22).

Finally, we treat with the critical eigenvalue problem

— V- (IxI7""Vu) = V(xX)u = iu, in €, 22%)
u=0, in 0%,
where  is a bounded domain of RN, N > 3, containing the origin and
V(X)z(N_zm_2>2 L 2<m+2<N
2 |x|2m—2

The term critical is due to the fact that the constant C* = (N — 2m — 2)?/4 is the optimal
constant of the Hardy-type inequality (e.g. see [13]):

|Vu|? N—2m—2 2/ u?
dx > dx. 2.29
o x| B o [x[7m2 X (2.29)

It is also clear that the improved Hardy—Sobolev inequality for this case is
Vul? N —2m -2\’ 2
V| dr — m /‘ u d
Q |x|2m 2 o |x|2m+2
N-2

> Cpys (/ x|~ sz|u|N2( 10 <|D|>> dx) s (2.30)

where D > D, e"2. The best constant Cpys is given by (1.8). Then, by standard arguments,
we may prove that there exists a complete orthonormal basis {¢> I }j 5, of L%(Q) consisting of
eigenfunctions of (2.28) with the eigenvalue sequence -

D<A <A< <A< —> 00, as j— oo. (2.31)
Following the same arguments of theorem 2.1, we have that

Theorem 2.3. Assume that D > Dy e, Then, the eigenvalues of the problem (2.28) satisfy
Weyl’s estimate

Nl -2
2 ||L2A(/Q)]N

i X_ille

A= Cuse  |Ix] T X
j = Cuse™ |lIx]

> S(N) (N —2
1

e d ¥ (2.32)

where X := (— log(‘xl))
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