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Abstract
Motivated by the work (Karachalios N I 2008 Lett. Math. Phys. 83 189–
99), we present explicit asymptotic estimates on the eigenvalues of the critical
Schrödinger operator, involving inverse-square potential, based on improved
Hardy–Sobolev-type inequalities.

PACS number: 02.30.Tb

1. Introduction

In this paper, we present explicit asymptotic estimates of the critical Schrödinger operator,
based on recent results on improved Hardy–Sobolev-type inequalities, motivated by the work
[5] where Weyl’ s type estimates where obtained by using improved Hardy inequalities.

More precisely, in [5], the author considered the eigenvalue problem for the critical
Schrödinger operator −� − V ,

− �u − V (x)u = λu, in �, (1.1)

u = 0, on ∂�,

where � is a bounded domain of R
N , N � 3, containing the origin and

V (x) =
(

N − 2

2

)2 1

|x|2 .

The term critical is due to the fact that the constant C∗ = (N − 2)2/4 is the optimal constant
of the Hardy inequality

C

∫
�

u2

|x|2 dx �
∫

�

|∇u|2 dx, for all u ∈ C∞
0 (�),� ⊆ R

N, N � 3, (1.2)
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which is not attained in H 1
0 (�). Based on the following improved Hardy inequalities (see

[3, 10]),∫
�

|∇u|2 dx −
(

N − 2

2

)2 ∫
�

u2

|x|2 dx � c(q,�)

(∫
�

uq dx

)1/q

, 1 � q <
2N

N − 2
, (1.3)

which holds for every u ∈ C∞
0 (�), the author in [5] proved the following Weyl’s type estimates

for the eigenvalues of (1.1)

Theorem 1.1. Let � ⊂ R
N , N � 3, be a bounded domain containing the origin. Assume

further that

2N

N + 2
< q < 2. (1.4)

The eigenvalues of the problem (1.1) with potential V (x) = (N − 2)2/4|x|2 satisfy Weyl’s
estimate

λj � C(q,�)e−1μN(�)
− Nq−2N+2q

Nq j
Nq−2N+2q

Nq , j → ∞, (1.5)

where μN(�) denotes the Lebesgue measure of � in R
N .

In this work we improve these Weyl’s type estimates by using improved Hardy–Sobolev
inequalities; theorem A in [4] states that

Theorem 1.2. Let � be a bounded domain in R
N , N � 3, containing the origin and

D > D0 := supx∈� |x|. Then, there exists a positive constant CHS, such that

∫
�

|∇u|2 dx �
(

N − 2

2

)2 ∫
�

u2

|x|2 dx +CHS

(∫
�

|u| 2N
N−2

(
− log

( |x|
D

))− 2(N−1)

N−2

dx

) N−2
N

(1.6)

for all u ∈ C∞
0 (�).

This estimate is sharp in the sense that the power − 2(N−1)

N−2 in the logarithm cannot be
replaced by a bigger power. We note that in the radial case, i.e. where � = BR is the open ball
in R

N , N � 3, of radius R centered at the origin and u ∈ C∞
0 (BR\{0}) is a radially symmetric

function, the same result was proved in [11], with the use of a Caffarelli–Kohn–Nirenberg
inequality and in [15] with the use of Bliss’ inequality. From the discussion in [4, 11], it is
clear that the nature of (1.6) depends on the distance of D from D0; for instance in the case
where D = D0, the author in [11] proved that the inequality cannot hold in the nonradial case.

The best constant CHS in (1.6), as it was obtained in [1], is as follows.

Lemma 1.1. Let � be a bounded domain in R
N , N � 3, containing the origin and

D0 = supx∈� |x|. If

D � D0 e
1

N−2 , (1.7)

then the best constant in (1.6) is given by

CHS := S(N) (N − 2)−
2(N−1)

N , (1.8)

where S(N) is the best constant in the Sobolev inequality in R
N and there exists no minimizer

in H 1
0 (�).

As is well known, see [2, 9, 12], the best constant in the Sobolev inequality in R
N ,∫

RN

|∇u|2 dx � S

(∫
RN

|u| 2N
N−2 dx

) N−2
N

, (1.9)
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is

S(N) = N(N − 2)

4
|SN |2/N = 22/N π1+1/N �

(
N + 1

2

)−2/N

, (1.10)

where SN is the area of the N-dimensional unit sphere and the extremal functions are

ψμ,ν(|x|) = (μ2 + ν2|x|)2)−(N−2)/2, μ 	= 0, ν 	= 0. (1.11)

The same best constant for (1.6) was obtained in [15] for the radial case of (1.6) i.e. assuming
only radial functions defined on � = BR and D = R.
In this case the minimizers are given by

φm,n(|x|) = |x|− N−2
2 ψm,n

((
− log

( |x|
R

))− 1
N−2

)
, x ∈ BR\{0}, φm,n|∂BR

= 0.

(1.12)

where ψm,n are the extremals of the Sobolev inequality.

2. Explicit Weyl’s type estimates

Using (1.6), lemma 1.1 and the arguments of [8] we may prove that

Theorem 2.1. Assume that D � D0 e
1

N−2 . Then, the eigenvalues of the problem (1.1) with
potential V (x) = (N − 2)2/4|x|2 satisfy Weyl’s estimate

λj � CHS e−1 ||X− N−1
2 ||−

4
N

L2(�)
j

2
N

� S(N) (N − 2)−
2(N−1)

N e−1 ||X− N−1
2 ||−

4
N

L2(�)
j

2
N , (2.1)

where X := (− log
( |x|

D

))−1
.

Proof. We adapt the arguments of [5] in our case. Let � ⊂ R
N , N � 3, be a bounded

domain containing the origin. We define the operator

K0 = −� − (N − 2)2

4|x|2
with the domain of definition D(K0) = C∞

0 (�) and its Friedrich’s extension K : D(K) →
L2(�), with its domain defined as

D(K) :=
{
u ∈ H(�) : −�u − (N − 2)2

4|x|2 u ∈ L2(�)

}
,

which is a nonnegative self-adjoint operator on L2(�). Then as it was proved in [14]: there
exists a complete orthonormal basis

{
φj

}
j�1 of L2(�) consisting of eigenfunctions of K with

the eigenvalue sequence

0 < λ1 � λ2 � · · · � λj � · · · → ∞, as j → ∞. (2.2)

The operator K being non-negative and self-adjoint in L2(�) gives rise to the semigroup
of operators e−Kt for every t > 0, possessing an integral kernel k(x, y, t) > 0 for all
(x, y, t) ∈ � × � × (0,∞). The operator K has compact resolvent; thus, k(x, y, t) can also
be represented as

k(x, y, t) =
∞∑

n=1

exp(−λnt)φn(x)φn(y). (2.3)

3
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We quote that k(x, y, t) solves the problem

∂tk(x, y, t) − �yk(x, y, t) − (N − 2)2

4|y|2 k(x, y, t) = 0, in � × � × (0,∞), t > 0,

k(x, y, t) > 0, in � × � × (0,∞),

k(x, y, t) = 0, in ∂� × ∂� × (0,∞). (2.4)

Since {φj }j�1 is an orthonormal basis of L2(�), it follows that

f (t) :=
∞∑

n=1

exp(−2λnt) =
∫

�

∫
�

k2(x, y, t) dx dy. (2.5)

Applying Hölder’s inequality and the usual 1-trick, we get that

f (t) =
∫

�

∫
�

[
X

2(N−1)

N−2

( |y|
D

)
kp∗

(x, y, t)

] 1
p∗−1

·
[
X

− 2(N−1)

(N−2)(p∗−2)

( |y|
D

)
k(x, y, t)

] p∗−2
p∗−1

dx dy (2.6)

�
∫

�

[∫
�

X
2(N−1)

N−2

( |y|
D

)
kp∗

(x, y, t) dy

] 1
p∗−1

·
[∫

�

X
− 2(N−1)

(N−2)(p∗−2)

( |y|
D

)
k(x, y, t) dy

] p∗−2
p∗−1

dx (2.7)

�
[∫

�

(∫
�

X
2(N−1)

N−2

( |y|
D

)
kp∗

(x, y, t) dy

) 2
p∗

dx

] p∗
2(p∗−1)

(2.8)

·
(∫

�

Q2(x, t) dx

) p∗−2
2(p∗−1)

, (2.9)

where Q denotes the function

Q(x, t) =
∫

�

X
− 2(N−1)

(N−2)(p∗−2)

( |y|
D

)
k(x, y, t) dy =

∫
�

X− N−1
2

( |y|
D

)
k(x, y, t) dy. (2.10)

Observe that the function X− N−1
2 belongs to L2(�); more precisely,

||X− N−1
2 ||2L2(�) =

∫
�

X−(N−1)

( |y|
D

)
dy �

∫
BD

X−(N−1)

( |y|
D

)
dy

� NωN

∫ D

0
rN−1

(
− log

r

D

)N−1
dr

and after some proper change of variables, we have that

||X− N−1
2 ||2L2(�) � N ωN DN

∫ 1

0
tN−1 (− log t)N−1 dt

= N ωN DN

∫ ∞

0
sN−1 e−Ns ds = ωN DN (N − 1)!

NN−1
. (2.11)

Note that the equality holds in the case where � is a sphere with center the origin and radius
D. Moreover, (2.3) and the fact that {φj }j�1 are orthonormal in L2(�) imply that

Q(x, 0) = X− N−1
2

( |x|
D

)
.

4
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Thus, Q(x, t) is the solution of the Cauchy–Dirichlet problem:

∂tQ(x, t) − �xQ(x, t) − (N − 2)2

4|x|2 Q(x, t) = 0, in � × (0,∞), (2.12)

Q(x, 0) = X− N−1
2

( |x|
D

)
, for x ∈ �,

(2.13)
Q(x, t) = 0, in ∂� × (0,∞).

Multiplying the heat equation (2.12) by Q in the L2(�)-inner product, we get the energy
equation

1

2

d

dt
||Q(t)||2L2(�) + ||Q(t)||2Hμ(�) = 0.

The energy equation above, combined with (2.13), implies that

||Q(t)||2L2(�) � ||Q(0)||2L2(�) = ∣∣∣∣X− N−1
2

∣∣∣∣2
L2(�)

. (2.14)

Now, by inserting (2.14) into (2.6), the inequality

f
2(p∗−1)

p∗ (t) � ||X− N−1
2 ||

2(p∗−2)

p∗
L2(�)

∫
�

(∫
�

X
2(N−1)

N−2

( |y|
D

)
kp∗

(x, y, t) dy

) 2
p∗

dx (2.15)

follows. The right-hand side of (2.15) can be estimated further, by applying the improved
Hardy–Sobolev inequality (1.6). Thus,

f
2(p∗−1)

p∗ (t) �
||X− N−1

2 ||
2(p∗−2)

p∗
L2(�)

CHS

∫
�

∫
�

(∣∣∇yk(x, y, t)
∣∣2 − (N − 2)2

4|y|2 k2(x, y, t)

)
dy dx. (2.16)

On the other hand, by (2.3) and equation (2.4), we deduce that

d

dt
f (t) =

∫
�

∫
�

k(x, y, t) ∂t k(x, y, t) dx dy

= −2
∫

�

∫
�

(∣∣∇yk(x, y, t)
∣∣2 − (N − 2)2

4|y|2 k2(x, y, t)

)
dy dx. (2.17)

Combining (2.16) and (2.17), we get the differential inequality

df (t)

f
2(p∗−1)

p∗ (t)
� −2CHS

||X− N−1
2 ||

2(p∗−2)

p∗
L2(�)

dt,

which if integrated with respect to time yields

f (t) =
∞∑

n=1

exp(−2λnt) �
[

p∗

2CHS(p∗ − 2)

] p∗
p∗−2

||X− N−1
2 ||2L2(�)t

− p∗
p∗−2 . (2.18)

Setting

t = p∗

2(p∗ − 2)

1

λj

,

in (2.18), we conclude with the estimate

j exp

(
− p∗

p∗ − 2

)
�

∞∑
n=1

exp

[ −λnp
∗

λj (p∗ − 2)

]
� C

− p∗
p∗−2

HS λ
p∗

p∗−2

j ||X− N−1
2 ||2L2(�). (2.19)

5
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From this inequality and the fact that (p∗ − 2)/p∗ = 2/N , we conclude that

λj � CHS e−1||X− N−1
2 ||−

4
N

L2(�)
j

2
N .

Finally, (1.8) implies the estimate (2.1). �

Remark 2.1. Weyl’s estimate for the eigenvalue problem (see [8, theorem 1.2])

− �u = μu, in �,
(2.20)

u = 0, in ∂�,

is the following:

μj � S(N) e−1 μN(�)−
2
N j

2
N , (2.21)

where μN(�) denotes the Lebesgue measure of � in R
N and S(N), given by (1.10), is the

best constant in the Sobolev’s inequality (see 1.9). We want to compare the estimates (2.21)
and (2.1). We claim that

(N − 2)−
2(N−1)

N ||X− N−1
2 ||−

4
N

L2(�)
< μN(�)−

2
N ,

or

(N − 2)(N−1) ||X− N−1
2 ||2L2(�) > μN(�). (2.22)

For the proof of (2.22), we observe that

||X− N−1
2 ||2L2(�) =

∫
�

(
− log

( |x|
D

))N−1

dx >

(
− log

(
D0

D

))N−1 ∫
�

dx

>

(
log

(
D

D0

))N−1

μN(�),

and from (1.7) we have that

||X− N−1
2 ||2L2(�) > (N − 2)−(N−1)μN(�).

Thus, (2.22) is proved. As it was expected the eigenvalues of (1.1) are generally smaller than
those of (2.20). We note also the results of [7] concerning the principal eigenvalue.

Using theorem 2.1, we may improve the results of [6] concerning the asymptotic behavior
of the corresponding to (1.1) parabolic equation:

φt − ν�φ − νV (x)φ + f (φ) = 0, ν > 0, in �, t > 0, (2.23)

φ(x, 0) = φ0(x), for x ∈ �, (2.24)

φ(x, t) = 0 in ∂�, t > 0, (2.25)

where the reaction term f : R → R is a polynomial of odd degree with a positive leading
coefficient

f (s) =
2γ−1∑
i = 0

bi s
i, b2γ−1 > 0. (2.26)

We denote by k the positive number for which

f ′(s) � −k, for any s ∈ R.

More precisely, in [6] using theorem 1.1, it was proved that

6
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Theorem 2.2. Let � ⊂ R
N , N � 3, be a bounded domain containing the origin.

The initial-boundary value problem (2.23)–(2.24)–(2.25) with nonlinearity (2.26) defines
a semiflow S̃(t) : L2(�) → L2(�) possessing a global attractor Ã. There exists a constant
C1(q,�,N) > 0 such that dimH Ã � d̃0 with

d̃0 = C1(q,�,N)
− Nq

Nq−2N+2q

(κ

ν

) Nq

Nq−2N+2q

μN(�). (2.27)

However, the dimension of the attractor, using theorem 2.1 and the arguments of [6], may
be estimated as

Lemma 2.1. The dimension of the global attractor Ã, obtained in theorem 2.2, satisfies
dimH Ã � d̃ , with

d̃ =
(κ

ν

) N
2

eN/2

(
N + 2

N

)N/2

C
−N/2
HS ||X− N−1

2 ||2L2(�),

where CHS is given in (1.8) and an estimate of ||X− N−1
2 ||L2(�) may be found in (2.11) and in

(2.22).

Finally, we treat with the critical eigenvalue problem

− ∇ · (|x|−2m∇u) − V (x)u = λu, in �,
(2.28)

u = 0, in ∂�,

where � is a bounded domain of R
N , N � 3, containing the origin and

V (x) =
(

N − 2m − 2

2

)2 1

|x|2m−2
, 2 � m + 2 � N.

The term critical is due to the fact that the constant C∗ = (N − 2m − 2)2/4 is the optimal
constant of the Hardy-type inequality (e.g. see [13]):∫

�

|∇u|2
|x|2m

dx �
(

N − 2m − 2

2

)2 ∫
�

u2

|x|2m+2
dx. (2.29)

It is also clear that the improved Hardy–Sobolev inequality for this case is∫
�

|∇u|2
|x|2m

dx −
(

N − 2m − 2

2

)2 ∫
�

u2

|x|2m+2
dx

� CHS

(∫
�

|x|− 2N
N−2 m |u| 2N

N−2

(
− log

( |x|
D

))− 2(N−1)

N−2

dx

) N−2
N

, (2.30)

where D � D0 e
1

N−2 . The best constant CHS is given by (1.8). Then, by standard arguments,
we may prove that there exists a complete orthonormal basis

{
φj

}
j�1 of L2(�) consisting of

eigenfunctions of (2.28) with the eigenvalue sequence

0 < λ1 � λ2 � · · · � λj � · · · → ∞, as j → ∞. (2.31)

Following the same arguments of theorem 2.1, we have that

Theorem 2.3. Assume that D � D0 e
1

N−2 . Then, the eigenvalues of the problem (2.28) satisfy
Weyl’s estimate

λj � CHS e−1 |||x| Nm
2 X− N−1

2 ||−
4
N

L2(�)
j

2
N

� S(N) (N − 2)−
2(N−1)

N e−1 |||x| Nm
2 X− N−1

2 ||−
4
N

L2(�)
j

2
N , (2.32)

where X := (− log
( |x|

D

))−1
.

7
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